Binary mobile
A binary mobile consists of two branches, a left branch and a right branch. Each branch is a rod of a certain length, from which hangs either a weight or another binary mobile. We can represent a binary mobile using compound data by constructing it from two branches (for example, using
list
):
(define (make-mobile left right)
(list left right))
A branch is constructed from a
length
(which must be a number) together with a
structure
, which may be either a number (representing a simple weight) or another mobile:
(define (make-branch length structure)
(list length structure))
a. Write the corresponding selectors
left-branch
and
right-branch
, which return the branches of a mobile, and
branch-length
and
branch-structure
, which return the components of a branch.
b. Using your selectors, define a procedure
total-weight
that returns the total weight of a mobile.
c. A mobile is said to be balanced if the torque applied by its top-left branch is equal to that applied by its top-right branch (that is, if the length of the left rod multiplied by the weight hanging from that rod is equal to the corresponding product for the right side) and if each of the submobiles hanging off its branches is balanced. Design a predicate that tests whether a binary mobile is balanced.
d. Suppose we change the representation of mobiles so that the constructors are
(define (make-mobile left right)
(cons left right))
(define (make-branch length structure)
(cons length structure))
How much do you need to change your programs to convert to the new representation?
Там, по логике вещей, make-mobile и это nester-right-mobile. Тоже над этим призадумался, когда тесты переносил.
а почему в тестах при создании nested-right-branch мы вызываем make-branch, куда вторым аргументом передаем ветку, nested-left-branch, хотя второй аргумент по условию задачи должен быть числом и означать длину ветки?