#
Fibonacci numbers through transformation
^{
}

There is a clever algorithm for computing the Fibonacci numbers in a logarithmic number of steps. Recall the transformation of the state variables a and b in the fib-iter process of section 1.2.2: a ← a + b and b ← a. Call this transformation T, and observe that applying T over and over again n times, starting with 1 and 0, produces the pair Fib(n + 1) and Fib(n). In other words, the Fibonacci numbers are produced by applying Tⁿ, the nth power of the transformation T, starting with the pair (1,0). Now consider T to be the special case of p = 0 and q = 1 in a family of transformations Tpq, where Tpq transforms the pair (a,b) according to a ← bq + aq + ap and b ← bp + aq. Show that if we apply such a transformation Tpq twice, the effect is the same as using a single transformation Tp'q' of the same form, and compute p' and q' in terms of p and q. This gives us an explicit way to square these transformations, and thus we can compute Tⁿ using successive squaring, as in the fast-expt procedure. Put this all together to complete the following procedure, which runs in a logarithmic number of steps:

```
(define (fib n)
(fib-iter 1 0 0 1 n))
(define (fib-iter a b p q count)
(cond ((= count 0) b)
((even? count)
(fib-iter a
b
<??> ; compute p'
<??> ; compute q'
(/ count 2)))
(else (fib-iter (+ (* b q) (* a q) (* a p))
(+ (* b p) (* a q))
p
q
(- count 1)))))
```

```
(check-equal? (fib 1) 1)
(check-equal? (fib 2) 1)
(check-equal? (fib 7) 13)
(check-equal? (fib 8) 21)
```