Код Ревью

Сравни свои решения

    #| BEGIN (Write your solution here) |#
;recursive
(define (cont-frac n d k)
  (define (f n d k c)
    (if (= k c)
        (d k)
        (/ (n k) (+ (d k)
                    (f n d k (+ c 1))))))
  (f n d k 0))

;iterative 
(define (cont-frac n d k)
  (define (iter n d k c result)
    (if (= k c)
        result 
        (/ (n k) (+ (d k)
                    (iter n d k (+ c 1) result)))))
  (iter n d k 0 (d k)))
#| END |#
    #| BEGIN (Write your solution here) |#
;recursive
(define (cont-frac n d k)
  (define (f c)
    (if (> c k)
        0
        (/ (n c) (+ (d c) (f (+ c 1))))))
  (f 1))

;iterative 
(define (cont-frac n d k)
  (define (iter c result)
    (if (> c k)
        result
        (iter (+ c 1) (/ (n k) (+ (d k) result)))))
  (iter 1 0))
#| END |#
    #| BEGIN (Write your solution here) |#
(define (cont-frac n d k)
  (if (= k 0)
      0
      (/ (n k) (+ (d k) (cont-frac n d (- k 1))))))

(define (cont-frac n d k)
  (define (iter k result)
    (if (= k 0)
        result
        (iter (- k 1) (/ (n k) (+ (d k) result)))))
  (iter k 0))
#| END |#
    #| BEGIN (Write your solution here) |#
;recursive
(define (cont-frac n d k)
  (define (f n d k c)
    (if (= k c)
        (d k)
        (/ (n k) (+ (d k)
                    (f n d k (+ c 1))))))
  (f n d k 0))

;iterative 
(define (cont-frac n d k)
  (define (iter n d k c result)
    (if (= k c)
        result 
        (/ (n k) (+ (d k)
                    (iter n d k (+ c 1) result)))))
  (iter n d k 0 (d k)))
#| END |#
    #| BEGIN (Write your solution here) |#
;recursive
(define (cont-frac n d k)
  (define (f c)
    (if (> c k)
        0
        (/ (n c) (+ (d c) (f (+ c 1))))))
  (f 1))

;iterative 
(define (cont-frac n d k)
  (define (iter c result)
    (if (> c k)
        result
        (iter (+ c 1) (/ (n k) (+ (d k) result)))))
  (iter 1 0))
#| END |#
    #| BEGIN (Write your solution here) |#
(define (cont-frac n d k)
  (if (= k 0)
      0
      (/ (n k) (+ (d k) (cont-frac n d (- k 1))))))

(define (cont-frac n d k)
  (define (iter k result)
    (if (= k 0)
        result
        (iter (- k 1) (/ (n k) (+ (d k) result)))))
  (iter k 0))
#| END |#