Код Ревью
Сравни свои решения
#| BEGIN (Write your solution here) |#
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp) (if (same-variable? exp var) 1 0))
((sum? exp) (make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
((exponentiation? exp)
(make-product
(make-product (exponent exp) (make-exponentiation (base exp) (- (exponent exp) 1)))
(deriv (base exp))
)
)
(else
(error "unknown expression type: DERIV" exp))
)
)
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2)) (+ a1 a2))
(else '(a1 + a2))
))
(define (make-product m1 m2)
(cond ((or (=number? m1 0) (=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2)) (* m1 m2))
(else '(m1 * m2))
)
)
(define (sum? x) (and (pair? x) (eq? (cadr x) '+)))
(define (addend s) (car s))
(define (augend s)
(if (not (symbol? (cddr s))) (caddr s)
(make-sum (addend s) (augend (cddr s)))
)
)
(define (product? x) (and (pair? x) (eq? (cadr x) '*)))
(define (multiplier p) (car p))
(define (multiplicand p)
(if (not (symbol? (cddr p))) (caddr p)
(make-product (addend p) (multiplicand (cddr p)))
)
)
(define (=number? exp num) (and (number? exp) (= exp num)))
(define (base n) (cadr n))
(define (exponent n) (caddr n))
(define (exponentiation? n) (and (pair? n) (eq? (car n) '**)))
(define (make-exponentiation b e)
(cond ((= e 0) 1)
((= e 1) b)
(else (list '** b e))
)
)
#| END |#
#| BEGIN (Введите свое решение) |#
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp) (if (same-variable? exp var) 1 0))
((sum? exp) (make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
((exponentiation? exp)
(make-product
(make-product (exponent exp) (make-exponentiation (base exp) (- (exponent exp) 1)))
(deriv (base exp))
)
)
(else
(error "unknown expression type: DERIV" exp))
)
)
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2)) (+ a1 a2))
(else (list a1 '+ a2)))
)
(define (make-product m1 m2)
(cond ((or (=number? m1 0) (=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2)) (* m1 m2))
(else (list m1 '* m2))
)
)
(define (sum? x) (and (pair? x) (eq? (cadr x) '+)))
(define (addend s) (car s))
(define (augend s)
(if (null? (cdddr s)) (caddr s)
(make-op (cddr s))
)
)
(define (make-op exp)
(cond
((number? exp) exp)
((sum? exp) (make-sum (addend exp) (augend exp)))
((product? exp)
(if (null? (cdddr exp))
(make-product (multiplier exp) (caddr exp))
(make-op (cons (make-product (multiplier exp) (caddr exp))
(cdddr exp)))
)
)
)
)
(define (product? x) (and (pair? x) (eq? (cadr x) '*)))
(define (multiplier p) (car p))
(define (multiplicand p)
(if (null? (cdddr p)) (caddr p)
(make-op (cddr p))
)
)
(define (=number? exp num) (and (number? exp) (= exp num)))
(define (base n) (cadr n))
(define (exponent n) (caddr n))
(define (exponentiation? n) (and (pair? n) (eq? (car n) '**)))
(define (make-exponentiation b e)
(cond ((= e 0) 1)
((= e 1) b)
(else (list '** b e))
)
)
#| END |#
#| BEGIN (Write your solution here) |#
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp) (if (same-variable? exp var) 1 0))
((sum? exp) (make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
((exponentiation? exp)
(make-product
(make-product (exponent exp) (make-exponentiation (base exp) (- (exponent exp) 1)))
(deriv (base exp))
)
)
(else
(error "unknown expression type: DERIV" exp))
)
)
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2)) (+ a1 a2))
(else '(a1 + a2))
))
(define (make-product m1 m2)
(cond ((or (=number? m1 0) (=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2)) (* m1 m2))
(else '(m1 * m2))
)
)
(define (sum? x) (and (pair? x) (eq? (cadr x) '+)))
(define (addend s) (car s))
(define (augend s)
(if (not (symbol? (cddr s))) (caddr s)
(make-sum (addend s) (augend (cddr s)))
)
)
(define (product? x) (and (pair? x) (eq? (cadr x) '*)))
(define (multiplier p) (car p))
(define (multiplicand p)
(if (not (symbol? (cddr p))) (caddr p)
(make-product (addend p) (multiplicand (cddr p)))
)
)
(define (=number? exp num) (and (number? exp) (= exp num)))
(define (base n) (cadr n))
(define (exponent n) (caddr n))
(define (exponentiation? n) (and (pair? n) (eq? (car n) '**)))
(define (make-exponentiation b e)
(cond ((= e 0) 1)
((= e 1) b)
(else (list '** b e))
)
)
#| END |#
#| BEGIN (Введите свое решение) |#
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp) (if (same-variable? exp var) 1 0))
((sum? exp) (make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
((exponentiation? exp)
(make-product
(make-product (exponent exp) (make-exponentiation (base exp) (- (exponent exp) 1)))
(deriv (base exp))
)
)
(else
(error "unknown expression type: DERIV" exp))
)
)
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2)) (+ a1 a2))
(else (list a1 '+ a2)))
)
(define (make-product m1 m2)
(cond ((or (=number? m1 0) (=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2)) (* m1 m2))
(else (list m1 '* m2))
)
)
(define (sum? x) (and (pair? x) (eq? (cadr x) '+)))
(define (addend s) (car s))
(define (augend s)
(if (null? (cdddr s)) (caddr s)
(make-op (cddr s))
)
)
(define (make-op exp)
(cond
((number? exp) exp)
((sum? exp) (make-sum (addend exp) (augend exp)))
((product? exp)
(if (null? (cdddr exp))
(make-product (multiplier exp) (caddr exp))
(make-op (cons (make-product (multiplier exp) (caddr exp))
(cdddr exp)))
)
)
)
)
(define (product? x) (and (pair? x) (eq? (cadr x) '*)))
(define (multiplier p) (car p))
(define (multiplicand p)
(if (null? (cdddr p)) (caddr p)
(make-op (cddr p))
)
)
(define (=number? exp num) (and (number? exp) (= exp num)))
(define (base n) (cadr n))
(define (exponent n) (caddr n))
(define (exponentiation? n) (and (pair? n) (eq? (car n) '**)))
(define (make-exponentiation b e)
(cond ((= e 0) 1)
((= e 1) b)
(else (list '** b e))
)
)
#| END |#